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a b s t r a c t

A preconcentration–separation technique for lead(II), cadmium(II), chromium(III), nickel(II) and man-
ganese(II) ions has been established. The procedure is based on coprecipitation of these ions by the aid
of Cu(II)-dibenzyldithiocarbamate precipitate. The precipitate was dissolved in 0.5 mL of concentrated
HNO3, and made up to 5 mL with distilled water. The heavy metals were determined by flame atomic
absorption spectrometer. The effects of analytical parameters like pH, amounts of reagents, sample vol-
ume, etc. on the recoveries of heavy metals were investigated. The influences of matrix ions were also
examined. The detection limits for the heavy metals based on 3 sigma (N = 21) were found in the range
of 0.34–0.87 �g L−1. In order to validate the proposed method, two certified reference materials of NIST
Heavy metals
Environmental sample

SRM 2711 Montana soil and NIST SRM 1515 Apple leaves were analyzed with satisfactory results. The
proposed method was applied for the determination of lead, cadmium, chromium, nickel and manganese

.
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in environmental samples

. Introduction

Heavy metals are important sources of environmental pollu-
ion and they can form compounds that are toxic even in very low
oncentrations [1–5]. Their accurate and precise determinations
re one of the main parts of analytical chemistry. Due to lower
nalyte levels than the quantitation limits of instrumental tech-
iques and interference effects of highly saline samples, separation
nd preconcentration techniques are used prior to determination
tep of the heavy metals ions [5–10]. Preconcentration–separation
ethods including solid phase extraction [11–13], cloud point

xtraction [14,15], membrane filtration [16,17], liquid–liquid
xtraction [18,19], electrochemical deposition [20,21], etc. have
een widely used for the preconcentration–separation of heavy
etal ions.
Coprecipitation has also an important place in the preconcentra-

ion and separation methods due to its some advantages including
implicity and short time period for the procedures [22–25]. In the

oprecipitation procedure, a precipitate was occurred by the com-
ination of a carrier element and a suitable inorganic or organic

igand. Various carrier elements including copper, nickel, alu-
inium, erbium, magnesium, indium, samarium, etc. have been
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sed for the coprecipitative preconcentration and separation of
eavy metal ions at traces levels [26–30]. Inorganic ligands like
ydroxide, thiocyanate and organic ligands like various ditiocarba-
ates, 5-methyl-4-(2-thiazolylazo) resorcinol, rubeanic acid, etc.

ave been used for this purpose [31–35]. According to our liter-
ture survey, no coprecipitation study for trace heavy metal ions
s performed by using the combination of copper(II) and diben-
yldithiocarbamate.

The aim of presented work is to established a new precise
nd accurate coprecipitation procedure for lead(II), cadmium(II),
hromium(III), nickel(II) and manganese(II) ions at ultra trace lev-
ls in environmental samples prior to their flame atomic absorption
pectrometric determinations.

. Experimental

.1. Apparatus

A PerkinElmer AAnalyst 700 atomic absorption spectrometer
Norwalk, CT, USA) with deuterium background corrector was used.
ll measurements were carried out in an air/acetylene flame. A

0 cm long slot-burner head, a lamp and an air–acetylene flame
ere used. The operating parameters for working elements were

et as recommended by the manufacturer.
A pH meter, Sartorius pp-15 Model glass-electrode was

mployed for measuring pH values in the aqueous phase. Milestone

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:msoylak@gmail.com
mailto:soylak@erciyes.edu.tr
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thos D closed vessel microwave system (maximum pressure
450 psi, maximum temperature 300 ◦C) was used. Digestion con-
itions for microwave system were applied as 2 min for 250 W,
min for 0 W, 6 min for 250 W, 5 min for 400 W, 8 min for 550 W,
entilation: 8 min [36,37].

.2. Reagents and solutions

All the reagents used were of analytical grade. Deionized double
istilled water was used throughout the experimental work. High
urity reagents from Sigma (St. Louis, MO, USA) and Merck (Darm-
tadt, Germany) were used for all preparations of sample solution.
he mono-elemental standard solutions (St. Louis, MO, USA) used
or the calibration procedures were prepared before use by dilu-
ion of the stock solution with 1 mol L−1 HNO3. Stock solutions of

atrix elements (St. Louis, MO, USA) were prepared from the high
urity compounds (99.9%). A 1% (m/v) solution of sodium diben-
yldithiocarbamate (Fluka no: 71485) was prepared by dissolving
f 1.0 g of sodium dibenzyldithiocarbamate in ethanol diluting to
00 mL with water.

The following buffer solutions were prepared for pH adjust-
ent: (a) 3.8 g sodium dihydrogen phosphate and 9 mL 85% of

hosphoric acid for pH 2; (b) 13.8 g sodium dihydrogen phosphate
nd 0.60 mL 85% of phosphoric acid for pH 3; (c) 77.0 g ammo-
ium acetate and 413 mL acetic acid for pH 4; (d) 13.1 g sodium
ihydrogen phosphate and 2.40 g disodium hydrogen for pH 5; (e)
8.5 g ammonium acetate and 2.5 mL acetic acid for pH 6; (f) 0.7 g
odium borate and 5 mL 1 mol L−1 hydrochloric acid pH 7; (g) 53.5 g
mmonium chloride and 4.0 mL ammonia for pH 8; (h) 500 mL
f 0.1 mol L−1 of ammonium chloride and 250 mL of 0.1 mol L−1 of
mmonia for pH 9; (i) 37.0 g ammonium chloride, 285 mL ammo-
ia for pH 10; were taken then the final volume was completed to
00 mL with distilled water.

.3. Model studies for coprecipitation

The copper(II)-dibenzyldithiocarbamate coprecipitation proce-
ure was tested with model solutions prior to its application to real
amples. An aqueous solution containing 20 �g of lead(II), 5 �g of
admium(II), 20 �g of chromium(III), 10 �g of nickel(II) and 10 �g of
anganese(II), were placed in centrifuge tubes separately. One mL

f 1000 mg L−1 of copper(II) as a carrier element was added. Then
.0 mL of 1% (m/v) dibenzyldithiocarbamate was added. The pH was
djusted to pH 9 by the addition of 2.0 mL of ammonium buffer.
fter 10 min, the solution was centrifuged at 3500 rpm for 20 min.
he precipitate remained adhering to the tube was dissolved with
.5 mL of concentrated HNO3, and made up to 5 mL with distilled
ater. Then the final volume of the supernatant was completed to
.0 mL with distilled water. The heavy metals in final solution were
etermined by flame atomic absorption spectrometer.

.4. Analysis of real samples

NIST SRM 2711 Montana soil and NIST SRM 1515 Apple leaves
250 mg), soil, sediment and river sediment (1.0 g) were digested
ith 6 mL of HCl (37%), 2 mL of HNO3 (65%) in microwave diges-

ion system and diluted to 50 mL with deionized water. Black tea
nd tobacco samples (1.0 g) were digested with 6 mL of concen-
rated HNO3 (65%) and 2 mL of H2O2 (30%) in microwave system

nd diluted up to 50 mL with deionized water [36,37]. A blank digest
as carried out in the same way. Then the preconcentration pro-

edure given above was applied to the final solutions. The levels
f heavy metals in the samples were determined by flame atomic
bsorption spectrometry.

T
l
w
b
w

ig. 1. The influences of pH on the recoveries of heavy metals (amounts of analytes:
0 �g of lead(II), 5 �g of cadmium(II), 20 �g of chromium(III), 10 �g of nickel(II) and
0 �g of manganese(II), amounts of carrier element: 1 mg copper(II), amounts of
igand: 10 mg dibenzyldithiocarbamate, N = 3).

Natural water samples analyzed were filtered through Milli-
ore cellulose membrane filter (0.45 �m pore size). The pH of the
amples was adjusted to 9.0 with buffer solution. Then the precon-
entration procedure given above was applied to the final solutions.
he levels of heavy metal ions in the samples were determined by
ame atomic absorption spectrometry.

. Results and discussion

.1. Influences of pH

The effect of pH on the quantitative recoveries of heavy metal
ons on the copper(II)-dibenzyldithiocarbamate precipitate were
nvestigated in the pH range of 2–10. The pH adjustments were
one by using different buffer solutions. Brown colored Cu(II)-
ibenzyldithiocarbamate precipitate was formed at the pH range
f 8–10 in our working conditions. The results for influences of pH
re depicted in Fig. 1. All the heavy metals ions were quantitatively
ecovered at the pH range of 8–10. Further works were performed
t pH 9 by adjusting with ammonia buffer.

.2. Effects of amount of Cu2+ as carrier element

The influences of amount of Cu2+ as carrier element on the
ecoveries of lead(II), cadmium(II), chromium(III), nickel(II) and
anganese(II) ions were also investigated. The results are shown

n Fig. 2. The recoveries were not quantitative without Cu2+. The
ecoveries increased and reach to quantitative values for all the
nvestigated heavy metals at the range of 1.0–3.0 mg of Cu2+ due
o the formation of Cu(II)-dibenzyldithiocarbamate precipitate. In
he light of these results, 1.0 mg of Cu2+ as carrier was used in all
urther works.

.3. Amount of dibenzyldithiocarbamate

The influences of amount of dibenzyldithiocarbamate on the
uantitative coprecipitation of heavy metal ions were also inves-
igated in the range of 0.0–40.0 mg of dibenzyldithiocarbamate.

he results are depicted in Fig. 3. The optimum recoveries of
ead(II), cadmium(II), chromium(III), nickel(II) and manganese(II)

ere obtained in the range of 10.0–40.0 mg of dibenzyldithiocar-
amate. For all further works, 10.0 mg of dibenzyldithiocarbamate
as used.
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Fig. 2. The influences of amount of Cu2+ on the recoveries of heavy metal ions (pH 9,
amounts of analytes: 20 �g of lead(II), 5 �g of cadmium(II), 20 �g of chromium(III),
10 �g of nickel(II) and 10 �g of manganese(II), amounts of ligand: 10 mg diben-
zyldithiocarbamate, N = 3).
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Table 2
Influences of matrix ions on the recoveries of heavy metals (N = 3)

Ion Added as Concentration
(mg L−1)

Pb Cd Cr Ni Mn

Na+ NaCl 10,000 97 ± 2 96 ± 3 96 ± 3 95 ± 3 99 ± 3
K+ KCl 3,000 95 ± 2 95 ± 2 95 ± 2 96 ± 2 95 ± 2
Ca2+ CaCl2 3,000 96 ± 3 96 ± 3 96 ± 3 96 ± 4 96 ± 3
Mg2+ MgCl2 3,000 95 ± 3 97 ± 3 99 ± 1 97 ± 3 97 ± 2
Cl− NaCl 25,000 96 ± 3 98 ± 3 96 ± 2 96 ± 2 98 ± 2
F− NaF 2,000 95 ± 2 96 ± 4 96 ± 2 98 ± 4 96 ± 2
NO3

− KNO3 3,000 95 ± 2 97 ± 3 97 ± 3 97 ± 3 97 ± 4
SO4

2− Na2SO4 3,000 96 ± 3 97 ± 2 95 ± 2 97 ± 2 96 ± 2
PO4

3− Na3PO4 1,000 97 ± 4 96 ± 4 95 ± 3 95 ± 3 95 ± 3
Al3+ Al2(SO4)3 50 96 ± 2 97 ± 2 96 ± 2 95 ± 2 97 ± 2
Fe3+ FeCl 50 98 ± 2 96 ± 3 96 ± 3 96 ± 3 96 ± 3
C
C
Z

p
b
r
(
t
d

3

c
p
o
t
h
a
i
w
e
m
h
t
s

3

b

ig. 3. Influences of the amounts of dibenzyldithiocarbamate on the recoveries of
eavy metals (pH 9, amounts of analytes: 20 �g of lead(II), 5 �g of cadmium(II),
0 �g of chromium(III), 10 �g of nickel(II) and 10 �g of manganese(II), amounts of

igand: 10 mg dibenzyldithiocarbamate, N = 3).

.4. Influences of sample volume
The effects of sample volume were examined in range of
5–250 mL, to possible application of the coprecipitation procedure
or natural water samples. The results are depicted in Table 1. The
ecoveries of heavy metal ions were found quantitative in the sam-

able 1
he effects of sample volume on the recoveries of heavy metals (pH 9, amounts of
nalytes: 20 �g of lead(II), 5 �g of cadmium(II), 20 �g of chromium(III), 10 �g of
ickel(II) and 10 �g of manganese(II), amounts of carrier element: 1 mg copper(II),
mounts of ligand: 10 mg dibenzyldithiocarbamate, N = 3)

L Recovery (%)

Pb Cd Cr Ni Mn

25 98 ± 3a 97 ± 2 99 ± 3 96 ± 2 98 ± 3
50 97 ± 2 98 ± 3 97 ± 2 97 ± 3 98 ± 2

100 95 ± 3 96 ± 2 96 ± 3 95 ± 2 96 ± 3
150 90 ± 2 85 ± 3 80 ± 2 90 ± 3 83 ± 2
50 70 ± 3 60 ± 2 50 ± 3 75 ± 2 77 ± 3

a Mean ± standard deviation.

s
1

d
m
c
(
r
c

3

i
i
m
m
a
p

3

u2+ CuSO4 50 97 ± 3 97 ± 2 97 ± 2 97 ± 2 97 ± 2
o2+ CoSO4 50 96 ± 3 98 ± 3 98 ± 3 98 ± 3 98 ± 3
n2+ ZnSO4 50 95 ± 3 96 ± 3 96 ± 3 96 ± 2 96 ± 2

le volume range of 25–100 mL. The high sample volumes may be
ehaved as eluent. The preconcentration factor is calculated by the
atio of the highest sample volume with the analytes understudy
100 mL) and the lowest eluent volume (2 mL). The preconcentra-
ion factor was 50. The time required for the coprecipitation and
etermination was about 45 min.

.5. Matrix effects

The interferic effects of matrix components of real samples espe-
ially highly saline samples including seawater, urine are important
roblem in the determination of heavy metals [36–42]. The effect
f some foreign ions (Table 2) which interfere with the determina-
ion of metal ions by the proposed method or/and often accompany
eavy metal ions in various real samples was examined. A fixed
mount of metal ions was taken with different amounts of foreign
ons and recommended procedure was followed. Tolerable limit
as defined as the highest amount of foreign ions that produced an

rror not exceeding 5% in the determination of investigated heavy
etal ions. The results are summarized in Table 2. The recoveries of

eavy metal ions were affected by the matrix ions. This results show
hat the presented procedure could be applied to the multi-element
eparation and preconcentration of heavy metals.

.6. Analytical figures of merit

The reproducibility of the presented procedure was evaluated
y model solution containing heavy metal ions (N = 7). The relative
tandard deviations (R.S.D.) of these determinations were below
0%.

The limits of detection (LOD) of the proposed procedure for the
etermination of analyte heavy metal were studied under the opti-
al experimental conditions. The detection limits, defined as the

oncentration equivalent to 3 times the standard deviation of blank
N = 21, XL = Xb + 3 s, XL: limit of detection, Xb: blank value) of the
eagent blank, were 0.87, 0.34, 0.75, 0.060 and 0.45 �g L−1 for lead,
admium, chromium, nickel and manganese, respectively.

.7. Applications

Tests of addition/recovery in the experiments for heavy metal
ons were performed in three water samples. The results are given

n Table 3. A good agreement was obtained between the added and

easured heavy metal amounts. The recovery values for the heavy
etal ions were greater than 95%. These values were quantitative

nd it shows that the presented procedure could be applied for the
reconcentration of heavy metal ions in real samples.
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Table 3
The results for tests of addition/recovery for heavy metals determination in water samples (sample volume: 25 mL, final volume: 5 mL, N = 4)

Element Added (�g) Tap water Sea water Spring water

Found (�g) Recovery (%) Found (�g) Recovery (%) Found (�g) Recovery (%)

Pb 0 ND – ND – ND –
10 9.9 ± 0.4a 99 9.9 ± 0.5 99 9.8 ± 0.3 98
20 19.6 ± 0.7 98 19.4 ± 0.8 97 19.2 ± 0.5 96
40 38.9 ± 0.9 97 38.1 ± 1.2 95 38.5 ± 0.8 96

Cd 0 ND – ND – ND –
2.5 2.5 ± 0.1 100 2.4 ± 0.2 96 2.4 ± 0.1 96
5 4.8 ± 0.2 96 4.9 ± 0.3 98 4.9 ± 0.2 98

10 10.1 ± 0.6 101 9.9 ± 0.5 99 9.6 ± 0.4 96

Cr 0 ND – ND – ND –
10 9.8 ± 0.4 98 9.7 ± 0.5 97 9.8 ± 0.4 98
20 19.4 ± 0.5 97 19.6 ± 0.7 98 19.1 ± 0.5 96
40 38.5 ± 0.9 96 38.2 ± 1.5 96 38.7 ± 0.9 97

Ni 0 ND – ND – ND –
5 4.9 ± 0.2 98 4.7 ± 0.3 94 4.8 ± 0.2 96

10 10.2 ± 0.5 102 9.8 ± 0.4 98 9.7 ± 0.3 97
20 19.6 ± 0.9 98 19.3 ± 0.9 97 19.2 ± 0.8 96

Mn 0 ND – ND – ND –
2.5 2.4 ± 0.1 96 2.5 ± 0.2 100 2.4 ± 0.1 96
5 4.9 ± 0.2 98 4.8 ± 0.3 96 4.9 ± 0.2 98

10 9.8 ± 0.8 98 9.9 ± 0.4 99 9.7 ± 0.5 97

a Standard deviation, ND: not detected.

Table 4
The results for reference standard materials (N = 4)

Element NIST SRM 2711 Montana soil (�g g−1) NIST SRM 1515 Apple leaves (�g g−1)

Certified value Our value Certified value Our value

Pb 1162 1100 ± 50a 0.47 0.45 ± 0.03
Cd 41.7 40.2 ± 2.5 0.013 0.020 ± 0.002
Cr (47)b 45.8 ± 3.2 (0.3) 0.32 ± 0.02
Ni 20.6 20.2 ± 1.5 0.91 0.87 ± 0.05
Mn 638 615 ± 23 54 52.5 ± 3.2

a Mean expressed as 95% tolerance limit.
b The value in the parentheses are not certified.

Table 5
Trace element levels of natural water samples (sample volume: 100 mL, final vol-
ume: 2 mL, N = 4)

Element Tap water
(�g L−1)

Sea water
(�g L−1)

Spring water
(�g L−1)

River water
(�g L−1)

Pb 5.4 ± 0.3a 4.5 ± 0.2 7.2 ± 0.5 6.7 ± 0.4
Cd 2.3 ± 0.2 2.6 ± 0.2 4.4 ± 0.3 3.5 ± 0.2
Cr BDL 5.5 ± 0.3 3.7 ± 0.2 4.2 ± 0.2
Ni BDL 6.7 ± 0.4 8.3 ± 0.6 7.5 ± 0.4
Mn 4.9 ± 0.2 3.8 ± 0.2 4.2 ± 0.2 5.9 ± 0.3

BDL: Below the detection limit.
a Mean expressed as 95% tolerance limit.

Table 6
The application of presented method in real samples for contents of heavy metal
ions (N = 4)

Element Soil from Tokat
City (�g g−1)

Black tea
(�g g−1)

Tobacco
(�g g−1)

River sediment
(�g g−1)

Pb 16.5 ± 0.9a 1.2 ± 0.1 1.6 ± 0.1 21.5 ± 0.8
Cd 1.5 ± 0.1 0.85 ± 0.05 1.8 ± 0.1 3.4 ± 0.2
Cr 24.6 ± 1.3 0.50 ± 0.04 2.9 ± 0.2 10.5 ± 0.7
Ni 15.1 ± 1.1 4.6 ± 0.2 2.4 ± 0.2 19.5 ± 1.5
Mn 96.8 ± 7.6 1045 ± 65 72.9 ± 5.4 75.1 ± 5.3

a Mean expressed as 95% tolerance limit.

Table 7
Comparative data from some recent studies on preconcentration–separation of heavy metal ions

Technique Analytes System Eluent/dissolving media PF Detection limit (�g L−1) R.S.D. (%) References

Coprecipitation Cu, Fe, Pb, Mn,
Zn, Cd, Ni, Bi, Cr

Cobalt-diethyldithiocarbamate 1.0 mL conc. HNO3 225 4–64 <7 [34]

Coprecipitation Pb Manganese dioxide HNO3/H2O2 – 3.2 <5 [43]
Coprecipitation Cd, Cu, Pb Aluminium hydroxide 4 mol L−1 HNO3 125 3–16 2–3 [44]
Coprecipitation Au, Pd, Pb Nickel(II)-

5-methyl-4-(2-thiazolylazo)
resorcinol

1.0 mL conc. HNO3 25 1.5–2.6 <10 [45]

Coprecipitation Fe, Pb, Bi Yttrium phosphate 6 mol L−1 HNO3 – 0.008–0.137 �g 1.2–4.1 [46]
Coprecipitation Cu, Co, Pb, Cd, Ni Cerium(IV) hydroxide 0.5 mL conc. HNO3 375 0.18–7 <9 [47]
Coprecipitation Co, Mn Copper(II)-8-hydroxquinoline 0.5 mL conc. HNO3 25 0.86–0.98 <10 [48]
SPE Cd, Cu Amberlite XAD-2/2-aminothiophenol 0.5 mol L−1 HCl 14–28 0.14–0.54 <5 [49]
SPE Pb Octadecyl bonded silica membrane

disk modified with Cyanex302
1 mol L−1 HNO3 400 1.0 0.4 [50]

Coprecipitation Pb, Cd, Cr, Ni, Mn Copper(II)-dibenzyldithiocarbamate 0.5 mL conc. HNO3 50 0.34–0.87 <10 This study

SPE: solid phase extraction, PF: preconcentration factor.
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The validation of the presented coprecipitation procedure is per-
ormed by the analysis of two CRMs (NIST SRM 2711 Montana soil
nd NIST SRM 1515 Apple leaves). The certified and observed val-
es for certified reference materials are given in Table 4. The results
ound were in good agreement with the certified values of certified
eference materials.

The procedure presented for lead, cadmium, chromium, nickel
nd manganese was applied to three different water samples. The
esults were given in Table 5. The method has been combined with
he microwave assisted digested samples including soil, sediment,
lack tea and tobacco samples. The results are given in Table 6.

. Conclusions

The presented procedure is simple and rapid with good preci-
ion and accuracy. Heavy metal ions were quantitatively recovered
y the investigated matrix ions. The comparisons of the presented
rocedure and some works on preconcentration and separation
f heavy metal ions in literature are given in Table 7. The pro-
osed procedure is superior to reported methods of heavy metal for
eparation–preconcentration in term of no need to consumption of
rganic solvents and enrichment factor. The method is relatively
apid as compared with previously reported procedures for the
nrichment of heavy metal ions [48–56].
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